P XXX/00 Abbreviations used in Biothermodynamics

a, b, c, d, e, f, g, x, y, z,	stoichiometric coefficients
act	actual conditions, e.g. T _{act}
\mathbf{a}_{j}	ion size parameter in [10 ⁻⁸ cm]
(am)	amorphous state
(aq)	aqueous state
[atm]	standard atmosphere: 1 [atm] = 101325[Pa] = 760[Torr] = 1.01325[bar]
\mathbf{a}_{w}	water activity
bar	$1 [bar] = 10^{5} [Pa] = 0.986923 [atm] = 750.062 [Torr]$
c	denotes combustion
c_0	speed of light in vacuum = 299792458 ms ⁻¹
	concentration of chemical species i
$egin{pmatrix} \mathbf{c_i} \\ \mathbf{c_i^0} \end{pmatrix}$	standard concentration of species j [1 mol/dm ³]
e e	electron
e	base of natural logarithm = 2.71828182846
e	elementary charge = $1.60217733(49) \cdot 10^{-19}$ Coulomb
emf	electromotive force
	equilibrium
eq	exponential function to base e
exp f	
1	denotes thermochemical quantity associated with the formation of a
f	substance from elements in their reference state, e.g. Gf, Hf, Sf
f_j	Debye-Hückel activity correction factor
(g)	gaseous state standard acceleration = 9.80665 ms ⁻²
g _n h	Planck constant = 6.6260755(40)·10 ⁻³⁴ Js
h : :	surplus charge of biomolecule
i, j k	chemical species designation Boltzmann constant = 1.380658(12)·10 ⁻²³ JK ⁻¹
(1)	liquid state
[]	
ln	natural logarithm = $2.30258509299 \cdot_{10} \log$
ln 10	natural logarithm of 10 = 2.30258509299
m 	slope of linear function
n	number of electrons transferred
neq	non-equilibrium oxidized
OX	
$p \\ p^0$	pressure standard state pressure 1[etm] (corlier) 1[ber] (today)
	standard state pressure 1[atm] (earlier), 1[bar] (today) -log {e ⁻ }; electron activity
pe	
pe ⁰	electron activity reference state = $\frac{1}{n} \cdot \log \text{ Keq} = \frac{F \cdot E^0}{2.3026 \text{ R} \cdot T}$
pН	-log {H ⁺ }, negative logarithm of proton activity
pK	-log K
± q	number of protons transferred, + if they are produced, - if
	they are consumed
r	denotes thermodynamic quantity associated with a reaction,
	e.g. ΔG_r , ΔH_r , ΔS_r
ref	reference state e.g. $T_{ref} = 298.15[K]$
red	reduced
(s)	solid state

$V_{i,j}$	stoichiometric coefficients of species i, j
x, y, z	stoichiometric coefficients
\mathbf{y}_1	intercept on y-axes
$oldsymbol{z}_{ m j}$	charge of species j
	designates concentration, or monomer unit designates activity
{} <>	designates hypothetical unit molecule, e.g. for biomass
$[-C_aH_b-]$	designates repetitive molecular fragment, e.g monomer
$[-C_a\Pi_b]$	molecule
$[C(H)_2(C)(CO)]$	designates group increment
$\alpha_0, \alpha_1, \alpha_2$	acid-base pair distribution coefficients
$\gamma_0, \gamma_1, \gamma_2, \varepsilon_0, \varepsilon_1, \vartheta_0, \vartheta_1, \vartheta_2$	for mono- and diprotic acids
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$	sum of terms
П	product of terms
$\mathbf{\epsilon}_{\mathrm{T}}$	temperature-dependent dielectric coefficient of water
π	ratio of circumference to diameter of a circle = 3.14159265359
$\sigma = 2\pi^5 k^4 / 15h^3 c^2$	Stefan-Boltzmann constant = 5.67051(19)·10 ⁻⁸ Wm ⁻² K ⁻⁴
σ	symmetry factor
I1, II-, V+, U, R, etc.	designates oxidation states
+, -, 2-, 3+, h, etc.	designates oxidation states designates ionic charges
0	denotes standard state conditions with reactants in their pure state at
	a pressure of 1 [atm] if the reactants are gases or 1-molal
	concentration if the reactants are solutes
0'	denotes standard state except for 1 reactant (e.g.pH≠0)
A, B, C, D,X, Y, Z	chemical species
A, B	Debye-Hückel-Onsager parameters
П, Б	A=1.82·10 ⁶ ($\varepsilon_{\rm T}$ ·T) ^{-3/2}
	$B=50.3 \cdot (\varepsilon_{T} \cdot T)^{-1/2}$
A^{-}, A^{2-}	anions of mono- and diproctic acids
[°C]	temperature in degree Celcius =T/K-273.15
C _r	sum of inorganic carbonate species
OI.	$= [CO_{2(aq)}] + [H_2CO_{3(aq)}] + [HCO_{3(aq)}^{-}] + [CO_{3(aq)}^{2-}]$
C, H, O, N, P, S	
	most common chemical elements in organic biomolecules Dalton
[Da] E	electrochemical potential in [V]=emf
E^0	standard emf= electrochemical reference potential
L	[V]= $-\Delta G_r^0/n \cdot F = 2.3026 \cdot R \cdot T \cdot p_s^0/F$
E^{0}	
F	standard emf at pH≠0 Faraday's constant =96.485309 [kJ·mol ⁻¹ ·V ⁻¹]
Gf^0	standard free energy of formation [kJ/mol]
$\Delta G f^0$	standard Gibbs free energy change of formation
$\Delta G_{\rm r}^0$	5. 5
$\Delta O_{\rm r}$	change of Gibbs free energy of reaction at standard conditions =- $\mathbf{R} \cdot \mathbf{T} \cdot \mathbf{ln} \mathbf{K}^0$
A C 0'	
$\Delta \mathrm{G}_{\mathrm{r}}^{0'}$	change of Gibbs free energy of reaction at standard conditions
4.0	except for one reactant (e.g. at pH≠0)
ΔG_{r}	change of Gibbs free energy of reaction at actual conditions
H ⁺	proton
Ht_0	standard enthalpy of formation [kJ/mol]
$\Delta \mathrm{Hf^0}$	standard enthalpy change of formation

$\Delta ext{H}_{ ext{r}}^{0}$	change of enthalpy of reaction at standard conditions
$\Delta H_r^{'}$	change of enthalpy of reaction at actual condition
HA , H_2A	mono- and diprotic acids, protonated
I	ionic strength = $\frac{1}{2} \sum_{j} c_{j} \cdot z_{j}^{2} [\text{mol}/1]$
	j j j. j. 1
IAP	ionic activity product
	Joule
[K]	temperature in Kelvin degree
K K' K'	dissociation, equilibrium or solubility coefficient
$\mathbf{K}_{1}^{'}, \ \mathbf{K}_{2}^{'}$ \mathbf{K}_{a}^{0}	temperature and/or ionic strength corrected dissociation coefficient
	thermodynamic acid dissociation coefficient
\mathbf{K}_{D} $\mathbf{K}_{\mathrm{eq}} \stackrel{}{=} \mathbf{K}^{\mathrm{0}}$	Ostwald coefficient $= K_H \cdot R \cdot T[-]$
$K_{eq} \stackrel{\sim}{=} K^{\circ}$	thermodynamic equilibrium coefficient
log Keq	$= -\Delta G_{\rm r}^0 / 2.3026 \cdot R \cdot T$
$egin{array}{c} K_{H_0} \ K_S \end{array}$	Henry's law constant [mol·1 ⁻¹ ·atm ⁻¹]
K _S	thermodynamic solubility product for standard conditions
K_s	actual solubility product for I≠1
K_{s}^{o}	operational solubility product for standard conditions at I=1
$K_{ m w}$	dissociation coefficient of water
[kJ]	kilojoule =10 ³ Joule
L_{T}	sum of inorganic sulfate species = $[H_2SO_4] + [HSO_4] + [SO_4^2]$
M	sum of minor elements in organic molecule
P	reaction-product
[Pa]	1 Pascal $= 9.86923 \cdot 10^{-6} [atm] = 7.50062 \cdot 10^{-3} [Torr]$
Q Q	ratio of actual activity products of reactants
Q	ratio of actual activity products of reactants excluding protons
D	(or/and electrons in half-reactions)
-R- R ⁺	rest of organic molecule, mostly C-entity
R R	average of oxidation state of M gas constant =8.31451·10 ⁻³ [kJ·mol ⁻¹ ·K ⁻¹] (concentration basis)
K	=82.057844· 10^{-3} [atm· $1 \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$] (pressure basis)
S	substrate
Sf ⁰	standard entropy of formation [J/K·mol]
$\Delta \mathrm{Sf}^{0}$	standard entropy of formation
$\Delta S_{\rm r}^0$	change of entropy of reaction at standard conditions
ΔS_{r}	change of entropy of reaction at actual conditions
S_{T}	sum of inorganic sulfide species = $[H_2S] + [HS^-] + [S^{2-}]$
T	thermodynamic temperature in [K]
U	oxidation state (number of) carbon in an organic molecule
[V]	volt
V_0	molar volume of ideal gas (at $p^0=1$ bar, $T=273.15$ K) =22.71108
v	$[l \cdot mol^{-1}]$, $= 22.41409[l \cdot mol^{-1}]$ for $p^0 = 1[atm]$ and $T = 273.15$ K; for
	$p^0=1[atm]$ and T=298.15 K, $V_0=24.46554[l\cdot mol^{-1}]$
W	number of possible structural configurations
X, Y	chemical species